\qquad
\qquad Per: \qquad

SUBTRACTION

Compute each difference. Show your work by drawing positive (+) and negative (-) counters.

Example A	Example B
$(-3)-(-2)=-1$	$(4)-(-3)=7$
Place 3 (-) counters and remove $2(-)$ counters.	Place $4(+)$ counters and then remove $3(-)$ counters. Since there are no (-) counters to remove, add zero pairs first.
1. $(4)-(1)=$	2. $(-3)-(-3)=$
3. $(-2)-(-1)=$	4. $(-6)-(-2)=$
5. (1) $-(4)=$	6. $(2)-(6)=$
7. $(-2)-(-3)=$	8. $(-2)-(-4)=$
9. $(-3)-(2)=$	10. $(-5)-(3)=$
11. $(4)-(-1)=$	12. $(-4)-(-2)=$

What would you tell a classmate who said, "Subtraction makes numbers smaller"?

COMPARING ADDITION AND SUBTRACTION

Compute each difference. Use positive (+) and negative $(-)$ counters if needed.

Compare parts (a) and (b) for each problem.
5. Subtracting 4 gives the same result as adding \qquad .
6. Subtracting -1 gives the same result as adding \qquad -
7. Write an addition expression that is equivalent to $10-5$. \qquad
8. Write an addition expression that is equivalent to $6-(-3)$. \qquad
Generalizing the rules for subtracting integers.
9. Subtracting a number gives the same result as adding \qquad -

$$
a-b=a+(-b), \quad \text { or } \quad a-(-b)=a+b
$$

for all integers a and b

