$8^{\text {th }}$ grade \quad Task $2 \quad$ Squares and Rectangles

Student Task	Use the properties of shapes to find similar shapes.
Core Idea Geometry Gad Measurement	Analyze characteristics and properties of two- and three- dimensional geometric shapes; develop mathematical arguments about geometric relationships; apply transformations and use symmetry to analyze mathematical situations; and apply appropriate techniques tools, and formulas to determine measurements. \bullet Understand relationships among the angles, side lengths, perimeter, and area of similar objects
-Describe sizes, positions, and orientations of shapes under informal transformations such as flips, turns, slides, and scaling.	
Core Idea $\mathbf{2}$ Mathematical Reasoning	Employ forms of mathematical reasoning and justification appropriately to the solution of a problem. Formulate conjectures and test them for validity

Eighth Grade - 2003

Squares and Rectangles

This problem gives you the chance to:

- use properties of shapes
- use coordinates

1. What specific properties must a quadrilateral have in order to be a rectangle?
\qquad
\qquad
2. What specific property must a rectangle have in order to be a square?

On this grid, the Xs indicate two corners of a square.

There are three different ways to draw a square with these Xs as two of its corners.
3. Draw the three squares on the grid.
4. Write the coordinates of the corners of the three squares.

Square $1 \quad(\quad, \quad)(\quad)(\quad, \quad)(\quad, \quad)$
Square $2(\quad, \quad)(\quad, \quad)(\quad, \quad(\quad, \quad)$
Square $3 \quad(\quad, \quad)(\quad)(\quad, \quad)(\quad, ~)$
Published by CTB/McGraw-Hill L.L.C. Copyright © 2003
by Mathematics Assessment Resource Service. All rights reserved

Eighth Grade - 2003

The points marked by Xs on this grid indicate two corners of a rectangle. Suppose that the area of each square on the grid is $1 \mathrm{~cm}^{2}$.

5. On the grid above, draw a rectangle with two of its corners on the Xs. Your rectangle should have a width to height ratio of $2: 3$.
6. What is the area of your rectangle?
7. How many different rectangles can be drawn on the grid using the points marked by Xs as corners?

Explain your reasoning.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Eighth Grade - 2003

Squares and Rectangles

The core elements of performance required by this task are: - use properties of shapes - use coordinates Based on these, credit for specific aspects of performance should be assigned as follows:	Points	${ }_{\text {S }}^{\substack{\text { Section } \\ \text { Points }}}$
1. Gives correct answers as: The corners must be right angles.	2	2
2. Gives correct answer as: The sides must be all the same length.	1	1
3. Draws three correct squares on the grid with corners on the X s. Partial credit: Draws two correct squares: 2 points Draws one correct square: 1 point	3 (2) (1)	3
4. Gives correct coordinates as: Square $1(5,4)(5,8)(9,8)(9,4)$ Square $2(5,4)(9,4)(9,0)(5,0)$ Square $3(5,4)(7,6)(9,4)(7,2)$ Partial credit: Gives correct coordinates for two of the three squares: 2 points Gives correct coordinates for one of the three squares: 1 point	3 (2) (1)	3
5. Draws correct rectangle with corners at (5,10) $(9,10)$.	1	1
6. Gives correct answer as: $24 \mathrm{~cm}^{2}$	1	1
7. Gives explanation such as: 12 or 13 (thinking of how many can be drawn on this grid with other two corners on grid-points) or As many as you like because the height of the rectangle can be any size - the grid can go on forever and/or other two corners do not have to be on grid-points. or Correctly considers rectangles with ratios 2:3.	1 or 1 or 1	1
Total Points		12

Published by CTBMBCRrux-Hill LC. Copynght © 2001
by Mathematics Assesment Resource Service All rights reserved

Eighth Grade - 2003

